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It is well kno~ [i] that instability can develop in a gas-discharge plasma because of 
the presence of a decreasing segment in the dependence of electron drift velocity on the applied 
electric field. This instability is analogous to the Gunn effect in semiconductors [2]. The 
linear stage of development of such instability was studied in [I, 3, 4]. Depending on the 
value of the parameter VuTm = E2/(4vnekTe), the rate of instability development is determined 
either by the frequency ~m -" (at T m v u >> i), or byv u(~mvu << i) [3] (where ~u is the in- 
elastic collision frequency, which defines the relaxation rate of the symmetrical component 
of the electron distribution function, T m = i/(4~o), o is the plasma conductivity, E is the 
electric field intensity, n e is the electron concentration, and T e is the mean electron ener- 
gy). In the second case instability development is not described by the transfer equations, 
and it is necessary to calculate the electron distribution function. To analyze the role 
played by kinetic effects, we shall consider homogeneous development of Gunn-type instability, 
using model inelastic collision integrals. Self-similar solutions of the kinetic equation 
will be found for constant current in the circuit. Numerical solution of the kinetic equa- 
tion will show that the full solution over time periods of the order of Vu -I approaches self- 
similarity. 

In the case considered, the problem reduces to solution of the spherically symmetric 
portion of the distribution function fo, which in a spatially homogeneous plasma has the 
form 

a/o _ e2E ~" 1 a v~ a/o ~ S t ] o = O  ' 
(1) a t  3n~ 2 v 2 a v  ~ m  Ov 

where v is the modulus of the electron velocity, v m is the elastic collision frequency, Stfo 
is the inelastic collision integral, and m is the mass of the electron. Since we are con- 
cerned with rapid processes with characteristic frequencies of the order of ~u, the ion con- 
centration can be considered frozen, and given the condition ~m~u << i, which we assume ful- 
filled, we may neglect the change in electron concentration, which to good accuracy is equal 
to the ion concentration. The condition for normalization of the distribution function then 
has the form 

• v ~  = ,1. 
0 

(2) 

With the assumptions made, given circuit conditions which maintain the current constant, the 
current constancy condition can be written in the form 

oo 

W e  --~ eE ~ v a af~ dv = cons t .  (3) 
- -  3n----~ 2 - ~ " ~  

0 

Thus, the problem of Gunn instability development under the conditions specified reduces to 
solution of Eqs. (1)-(3). 

Instability development can be explained qualitatively in the following manner. For ex- 
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ample, assume a field fluctuation develops such that the field increases. The distribution 
function begins to relax to a new form corresponding to the new field value. The value of 
the integral in Eq. (3) must then decrease, since the electron drift velocity decreases with 
increase in field. At W e = const the decrease in mobility leads to a further increase in 
field. The distribution function then spreads out along the velocity axis. Linear theory 
predicts an aperiodic development of the instability, the direction of which is determined 
by the initial direction of the field fluctuation toward increase or decrease. 

We then choose the collision integral in the divergent form 

1 0 St/o ----- 7 07 (vuV3]o)" (4) 

We write the velocity dependences of Vm and ~u in model form 

v ~  = VoVP, % = 5v~, 5 = ~oVq, (5) 

where p, q are real numbers. We note that Stfo has a divergent form when the threshold for 
inelastic processes is much less than T e. A power series representation of the frequency 
as a function of velocity is valid only over a certain energy interval. For the Gunn effect 
in gases, this model is purely qualitative, while for semiconductors it is apparently appli- 
cable over a wider range. In the special case where p = q, this integral describes energy 
losses in elastic collisions. With consideration of Eqs. (4), (5), Eqs. (i), (3) take on the 
forms 

at 3mVo v2 0~, av v 2 

o o  

~ v S - ' - ~ v  f o d v =  W ~ = c o n s t .  
d m v  0 J 

o 

In the stationary case the distribution function and corresponding drift velocity can be 
found easily: 

s v 8 eE a ' r (~ )  exp[--(--~)], W.o-----3mvm(a ) F(-~--2-)/F(~), 

I 

~ = [ ~ o [ - - ~ o ]  j , s = 2 p + q + 2 > O .  

(6) 

(7) 

From the expressions presented it is evident that Weo % E(q + a)/s, and consequently, the 
field dependence of drift velocity Will be falling when the condition q + 2 < 0 is satisfied 
(i.e., if energy losses are determined by elastic collisions, instability does not develop). 
If the instability does develop, then within the framework of the model chosen, the field 
increases (or decreases) without limit. Upon increase the distribution function spreads out 
along the velocity axis. 

Thus, in the nonlinear stage of Gunn instability development electron runaway occurs. 
The absence of characteristic velocity and time values permits us to seek self-similar solu- 
tions of Eqs. (1)-(3) in the form 

Substituting Eq. (8) 

]o ---- % ( t ) ! ; ( v % ( t ) ) .  

in normalization condition (2), we obtain 

co 

~i~7 ~ ~ ~, (~) d~ = 1, ~ = v,r~ (t). 
0 

(8) 

Without limiting generality we may take 
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co 

.~ U~ (~) d~ 
o 

=I. 
(9) 

Then 

( P l =  q~2 8" (i0) 

From condition (7), using Eq. (i0), we obtain 

A We3m~o 
E = - ~  q~ P, A =  

e 

C - - ~ - v - " d ~  
o 

We now s u b s t i t u t e  fo i n  t h e  form o f  Eq. (8)  i n  Eq. ( 6 ) .  U s i n g  Eqs .  ( i 0 ) ,  
ducing the variable ~, after simple manipulations we have 

t , e2A 2 -- o-- ' , 

~ (~)~ (Pr  - ~ ~ (~ %0~ + ~o~o+~ ~-~ (~+~+~*)~. 
C'~3m%o 

(ii), 

(ii) 

(12) 

and intro- 

Integrating over ~, we obtain 

-1  ' e2A2 (~22-p /~-2--P.,.'\ ~d ~R ~--P--q~:3+P+q~, ~2 (%h U~) = ~ 'tF~! + o~ow2 ~ v +  d( t ) ,  
C23m'2~ o 

d(t) = O, since fo(U)--~ 0 for v ~ oo. 

(i3) 

For q + 2 < 0 (condition for falling dependence of Weo onE), ~=§ t+~, so the second term on 
the right of Eq. (13) (collision integral) can be neglected, and Eq. (13) can be written as 

~-3 ' e~A = ~-~-~,-~,~ _ 
5% (q~2)t = = C23m2ve 

( t h e  m i n u s  s i g n  i s  i n t r o d u c e d  f o r  c o n v e n i e n c e ) ,  whence  we o b t a i n  

, (~) : B~ ~ p  (- z~ ~+~ 
C23m2v 0 

" \ e2A2 (P -~- 2 i / ;  (14) 

T~(t) = (~%(p -- 2)t + ~2) 1/(p--2) , p ~ 2; (15) 

~2(t) = B 3 exp (--%t), p = 2. (16) 

Since $(~) must satisfy condition (9), it follows that X > 0, and from s = 2p + q + 2 > 0 
we have p > -- (q + 2)/2. Thus, the solution obtained is valid for p and q values as follows: 

q + 2 < O ,  p > --(q + 2)/2. 

We note that the manner in which ~2(t) tends to zero may vary. Thus, for p~ 2 ~a § 0 

(t * ~), while for p > 2 ~2 § 0 (t = to), i.e., we reach a zero value in a finite time t o = 
B~/(i(p--2). Substituting Eqs. (15), (16) in Eq. (II), we obtain 

E = (A/C)(~(2 - -  p)t  @ B:)W(2-p),  p =/= 2; (17)  

A 
E = - c - B ~ P e x p ( ~ p t ) ,  p = 2. (18)  

I t  i s  e v i d e n t  f rom Eqs .  ( 1 7 ) ,  (18)  t h a t  a t  p > 2 t h e  f i e l d  i n c r e a s e  i s  d i s c o n t i n u o u s ,  a t  p =  
2 i t  i s  e x p o n e n t i a l ,  and a t  p < 2 i t  i s  d e s c r i b e d  by  a power  s e r i e s .  

The corresponding distribution functions have the form 

/ C23rn2~ o 
/o = B1 (L (2 - -  p) t -'c B~) 3/(p-2) exp | - -  L~p+2 

e2A ~ (p + 2) ] '  \ 
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1 

~ = v ( % ( 2 - - p ) t + B ~ ) p - 2 ,  p ~ 2 ,  

/ o = B x B ] e x p ( _ 3 ~ t ) e x p ( _ ~ , + 2  C23mivo ) 
e~A 2 (p ~ 2) ' 

= vB3e-~q p = 2 .  

I t  i s  c l e a r  f rom t h e  c o u r s e  of  t he  s o l u t i o n  t h a t  i n  t he  a s y m p t o t i c  s t a g e  of  Gunn i n s t a b i l i t y  
d e v e l o p m e n t  w i t h  i n c r e a s i n g  e l e c t r i c  f i e l d  i n e l a s t i c  c o l l i s i o n s  may be  n e g l e c t e d ,  which  i s  
a c o n s e q u e n c e  of  t h e  d e f i n i t e  d e p e n d e n c e  of  c o l l i s i o n  f r e q u e n c y  on v e l o c i t y .  I n  t h i s  c a s e ,  
the  d e p e n d e n c e  of  d i s t r i b u t i o n  f u n c t i o n  on fo rm of  t h e  i n e l a s t i c  p r o c e s s  s e c t i o n  f o r m a l l y  
d i s a p p e a r s .  We n o t e  t h a t  f o r  i n s t a b i l i t y  d e v e l o p m e n t  w i t h  d e c r e a s i n g  e l e c t r i c  f i e l d  no s i m -  
p l i f i e d  s o l u t i o n s  a r e  found .  

Us ing  Eqs.  ( 9 ) ,  ( 1 2 ) ,  r e l a t i o n s h i p s  be tween  the  c o n s t a n t s  ~, C, B~, Bi ,  and Bs can  be 
found .  For  t h e  c a s e  p = 2 

= (19) 

For the case p ~ 2 the coefficient of t can be determined by Eq. (17), 
written in the form 

. [ 3 ~l(p+2)lp 

if the latter is re- 

(20) 

We will consider the more restricted case of p and q values for which an exact solution can 
be found. Let p + q = O. Then Eq. (13) takes on the form 

~- ((POt- %60 ~ ~" = e'A ~ ~--l--p *~ , = - -  ~, 

whence 
~ ~1/(p-2) 

% = B 2 exp ((p - -  2) VoSot) -~ vo6--T] �9 

The expression for ~(~) is the same as in Eq. (14). Since p + q = 0 and q + 2 < 0, the solu- 
tion is valid for p > 2. According to Eq. (ii) we have 

E = (z-P)/P B: exp ((p - -  2) vo6ot ) + ~ [.--5" I j �9 (21) 

From Eqs. (9), (12), we can define 

[ 3 \ l (p+2) /p  
 o. ow (225 

~- ~ ~  222" Vo~ o 7 (-~-~-~) r ( p - - ~  3m vo~ o 

Both decreasing field (Bu < O) and increasing field (B2 > O) are described by Eq. (21). In 
the first case the field tends to zero exponentially (over long times), while in the second 
case the field increase is discontinuously abrupt. We note that in that case Eq. (21) trans- 
forms into Eq. (17). This can be shown by expanding the exponential term in Eq. (21) in a 
series in the vicinity of the breakoff point to, which is defined by B2 exp [(p--2) • ~o~oto] • 

~/(~o6o) = 0. 
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TABLE 1 

!C, SeC "1 

[3] 
t F, SaC -I i AE/E 

nunlerical calc. 

2 --3 8,13.i0 r 0,333 0,38 I t't5"10a 0,005 

2 --2,1 7,97.i0 ~ 0,024 0,049 I 6,56-10~ 0,04 

2 --2,02 i,59-10~ 0,005 O,OOi 0,i6 I 1,45.10~ 

To investigate the question of exit of an arbitrary solution to self-similarity, system 
(1)-(3) was solved numerically. Equation (I) was solved by an implicit technique using the 
drive method [5]. Boundary Conditions were chosen as in [6]. In each time step iteration 
over field was carried out to satisfy Eq. (3). The initial state was chosen close to sta- 
tionary. The perturbation was defined by specifying a value of W differing slightly from 
the stationary value. Then E and fo were perturbed at the initia~ time. All numerical cal- 
culations were performed for an initial value of E/N = 0.03' I0 -=~ V-m 2 (where N is the 
number of particles per m 3 of gas, equal to 2.69. 1025 m -3, which corresponds to atmospheric 
pressure). The values of ~o and 6o were chosen such that at an energy of 1 eV the sections 
corresponding to the frequencies v m and v u were equal to 10 -2o and 0,5' i0 -~ m 2. 

To verify the operation of the numerical technique chosen, a comparison was made with 
analytic theory in the linear state (for short time periods). The instability development 
increment F was calculated, and its value compared to the corresponding theoretical one, as 
determined by the expressions of [3]. Table 1 presents increment values for several p, q 

, , ^ i 
values. ̂  The analytic theory is valid when the condltmons IW i << 1 and I F/v I << (V = 
Vu(a), W e = d in We/d in E) are satisfied. The errors introduced by the ~in~te value u of 
these quantities are comparable in order of magnitude to the quantities IWel and F/~u, re- 
spectively. In order for the numerical calculation to generate the instability increment 
for the linear stage, it is necessary that I&E/EI << 1 (where AE is the initial field per- 
turbation). The quantity IAE/EI is the probable error in the increment calculation. Thus, 
it is evident from Table 1 that analytic theory and the numerical calculation are in good 
agreement within the limits of the errors indicated. 

System (1)-(3) was also solved for long time periods. Results are presented in Figs. 
1-3. 

Figure 1 shows field intensity versus time for the case of increasing field at p = 2, 
q = -- 3. Since according to Eq. (18) the increase should occur exponentially, a logarithmic 
ordinate In [(E/N) ' 1020 ] is used for ease of comparison. Self-similar solution (18) then 
appears as a straight line. It is evident from Fig. 1 that the numerical solution (solid 
line) asymptotically approaches a straight line, the slope of which agrees well with the 
theoretical solution (dashed line). 

Figure 2 shows a similar comparison for p = 1.5, q = -- 3 (power series field increase). 
The ordinate axis uses units [(E/N) �9 102~ , so that self-similar solution (17) is now a 
straight line. The numerical solution (solid line) also approaches a straight line, the slope 
of which agrees well with the theoretical solution (dashed line). 

Figure 3 shows calculation results for p = 2.5, q = --2.5, for the case of field de- 
crease. The ordinate axis units are [(E/N) " 102~ and the abscissa, exp (0.5~o6ot). 
Self-similar solution (21) will then have the form of a straight line, which intersects the 
ordinate axis at a point defined by Eq. (22). As is evident from Fig. 3, the numerical solu- 
tion also approaches a straight line, whose intersection (0) with the ordinate coincides 
with the theoretical solution's (O). 

Thus, homogeneous development of Gunn instability in a gaseous plasma under conditions 
where development is limited by establishment of the electron distribution function has been 
investigated. Approximate self-similar solutions have been found, to which the full solution 
obtained numerically tends. For the case of independence of the inelastic collision frequency 
from electron energy (p + q = 0) an exact self-similar solution has been found, toward which 
the full numerical solution also tends. 
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